Dynamic structural twist in metal–organic frameworks enhances solar overall water splitting (2024)

References

  1. Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).

    CAS Google Scholar

  2. Liu, M. et al. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 1, 16151 (2016).

    CAS Google Scholar

  3. Ran, J. et al. NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production. Nat. Commun. 13, 4600 (2022).

    PubMed PubMed Central CAS Google Scholar

  4. Wang, X. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).

    PubMed CAS Google Scholar

  5. Kosco, J. et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 7, 340–351 (2022).

    CAS Google Scholar

  6. Wang, Z., Li, C. & Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019).

    PubMed CAS Google Scholar

  7. Wang, Q., p*rnrungroj, C., Linley, S. & Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 7, 13–24 (2022).

    Google Scholar

  8. Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).

    PubMed CAS Google Scholar

  9. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    PubMed CAS Google Scholar

  10. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    PubMed CAS Google Scholar

  11. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).

    PubMed CAS Google Scholar

  12. Zhou, P. et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 613, 66–70 (2023).

    PubMed CAS Google Scholar

  13. Zhang, G., Lan, Z.-A., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).

    PubMed PubMed Central CAS Google Scholar

  14. Song, X. et al. Overall photocatalytic water splitting by an organolead iodide crystalline material. Nat. Catal. 3, 1027–1033 (2020).

    CAS Google Scholar

  15. Larom, S., Salama, F., Schuster, G. & Adir, N. Engineering of an alternative electron transfer path in photosystem II. Proc. Natl Acad. Sci. USA 107, 9650–9655 (2010).

    PubMed PubMed Central CAS Google Scholar

  16. Dods, R. et al. Ultrafast structural changes within a photosynthetic reaction centre. Nature 589, 310–314 (2021).

    PubMed CAS Google Scholar

  17. Grabowski, Z. R., Rotkiewicz, K. & Rettig, W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 103, 3899–4032 (2003).

    PubMed Google Scholar

  18. Wang, Y. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 4, 746–760 (2019).

    CAS Google Scholar

  19. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    PubMed Google Scholar

  20. Li, G., Zhao, S., Zhang, Y. & Tang, Z. Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv. Mater. 30, 1800702 (2018).

    Google Scholar

  21. Hu, H. et al. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).

    PubMed CAS Google Scholar

  22. Stanley, P. M., Haimerl, J., Shustova, N. B., Fischer, R. A. & Warnan, J. Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat. Chem. 14, 1342–1356 (2022).

    PubMed CAS Google Scholar

  23. Navalón, S., Dhakshinamoorthy, A., Álvaro, M., Ferrer, B. & García, H. Metal–organic frameworks as photocatalysts for solar-driven overall water splitting. Chem. Rev. 123, 445–490 (2023).

    PubMed Google Scholar

  24. Nguyen, H. L. Metal–organic frameworks for photocatalytic water splitting. Sol. RRL 5, 2100198 (2021).

    CAS Google Scholar

  25. Nguyen, H. L. Metal–organic frameworks can photocatalytically split water—why not? Adv. Mater. 34, 2200465 (2022).

    CAS Google Scholar

  26. Jiao, L., Wang, J. & Jiang, H.-L. Microenvironment modulation in metal–organic framework-based catalysis. Acc. Mater. Res. 2, 327–339 (2021).

    CAS Google Scholar

  27. Schmieder, P. et al. CFA-1: the first chiral metal–organic framework containing Kuratowski-type secondary building units. Dalton Trans. 42, 10786–10797 (2013).

    PubMed CAS Google Scholar

  28. Braslavsky, S. E. et al. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl. Chem. 83, 931–1014 (2011).

    CAS Google Scholar

  29. Lachmanová, Š. et al. Kinetics of multielectron transfers and redox-induced structural changes in N-aryl-expanded pyridiniums: establishing their unusual, versatile electrophoric activity. J. Am. Chem. Soc. 137, 11349–11364 (2015).

    PubMed Google Scholar

  30. Damrauer, N. H. et al. Effects of intraligand electron delocalization, steric tuning, and excited-state vibronic coupling on the photophysics of aryl-substituted bipyridyl complexes of Ru(II). J. Am. Chem. Soc. 119, 8253–8268 (1997).

    CAS Google Scholar

  31. Wang, H. et al. High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu–TiO2 photocatalysts. Nat. Mater. 22, 619–626 (2023).

    PubMed CAS Google Scholar

  32. Fu, C. et al. Spontaneous bulk-surface charge separation of TiO2-{001} nanocrystals leads to high activity in photocatalytic methane combustion. ACS Catal. 12, 6457–6463 (2022).

    CAS Google Scholar

  33. An, Y. et al. NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 56, 3036–3040 (2017).

    CAS Google Scholar

  34. Zhang, J. et al. Metal–organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv. Mater. 32, 2004747 (2020).

    CAS Google Scholar

  35. Salcedo-Abraira, P. et al. A novel porous Ti-squarate as efficient photocatalyst in the overall water splitting reaction under simulated sunlight irradiation. Adv. Mater. 33, 2106627 (2021).

    CAS Google Scholar

  36. Nyakuchena, J. et al. Direct evidence of photoinduced charge transport mechanism in 2D conductive metal organic frameworks. J. Am. Chem. Soc. 142, 21050–21058 (2020).

    PubMed CAS Google Scholar

  37. Shi, M. et al. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew. Chem. Int. Ed. 59, 6590–6595 (2020).

    CAS Google Scholar

  38. Liu, Y. et al. Phase-enabled metal–organic framework hom*ojunction for highly selective CO2 photoreduction. Nat. Commun. 12, 1231 (2021).

    PubMed PubMed Central CAS Google Scholar

  39. Bottaro, S. & Lindorff-Larsen, K. Biophysical experiments and biomolecular simulations: a perfect match? Science 361, 355–360 (2018).

    PubMed CAS Google Scholar

  40. Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    PubMed CAS Google Scholar

  41. Santaclara, J. G. et al. Organic linker defines the excited-state decay of photocatalytic MIL-125(Ti)-type materials. ChemSusChem 9, 388–395 (2016).

    PubMed CAS Google Scholar

  42. Rachuri, Y., Parmar, B., Bisht, K. K. & Suresh, E. Mixed ligand two dimensional Cd(II)/Ni(II) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(II) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media. Dalton Trans. 45, 7881–7892 (2016).

    PubMed CAS Google Scholar

  43. Huang, G.-Q. et al. Mixed-linker isoreticular Zn(II) metal–organic frameworks as Brønsted acid–base bifunctional catalysts for Knoevenagel condensation reactions. Inorg. Chem. 61, 8339–8348 (2022).

    PubMed CAS Google Scholar

  44. Bien, C. E. et al. Bioinspired metal–organic framework for trace CO2 capture. J. Am. Chem. Soc. 140, 12662–12666 (2018).

    PubMed CAS Google Scholar

  45. Ketchie, W., Murayama, M. & Davis, R. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal. 44, 307 (2007).

    CAS Google Scholar

  46. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    PubMed Google Scholar

  47. VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    CAS Google Scholar

  48. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. J. Phys. Rev. 140, A1133–A1138 (1965).

    Google Scholar

  49. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    PubMed Google Scholar

  50. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    CAS Google Scholar

  51. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    CAS Google Scholar

  52. Blochl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 50, 17953–17979 (1994).

    CAS Google Scholar

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    PubMed CAS Google Scholar

  54. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar

  55. Chu, W. et al. Ultrafast dynamics of photongenerated holes at a CH3OH/TiO2 rutile interface. J. Am. Chem. Soc. 138, 13740–13749 (2016).

    PubMed CAS Google Scholar

  56. Craig, C. F., Duncan, W. R. & Prezhdo, O. V. Trajectory surface hopping in the time-dependent Kohn–Sham approach for electron-nuclear dynamics. Phys. Rev. Lett. 95, 163001 (2005).

    PubMed Google Scholar

  57. Akimov, A. V. & Prezhdo, O. V. The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory and Comput. 9, 4959–4972 (2013).

    CAS Google Scholar

  58. Akimov, A. V. & Prezhdo, O. V. Advanced capabilities of the PYXAID program: integration schemes, decoherence effects, multiexcitonic states, and field–matter interaction. J. Chem. Theory Comput. 10, 789–804 (2014).

    PubMed CAS Google Scholar

  59. Nose, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    CAS Google Scholar

  60. Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).

    PubMed Google Scholar

Download references

Dynamic structural twist in metal–organic frameworks enhances solar overall water splitting (2024)
Top Articles
Explosive Leak: Mikayla Campinos Passes Controversy Hits The Internet
Meet Mikayla Campinos Leakes: A Remarkable Journey
Radikale Landküche am Landgut Schönwalde
Bin Stores in Wisconsin
Valley Fair Tickets Costco
Comcast Xfinity Outage in Kipton, Ohio
DL1678 (DAL1678) Delta Historial y rastreo de vuelos - FlightAware
Alpha Kenny Buddy - Songs, Events and Music Stats | Viberate.com
Cinepacks.store
Call Follower Osrs
Capitulo 2B Answers Page 40
Best Restaurants Ventnor
Https://Gw.mybeacon.its.state.nc.us/App
How to Store Boiled Sweets
Vanessa West Tripod Jeffrey Dahmer
Download Center | Habasit
Arre St Wv Srj
Chelactiv Max Cream
1989 Chevy Caprice For Sale Craigslist
Euro Style Scrub Caps
‘The Boogeyman’ Review: A Minor But Effectively Nerve-Jangling Stephen King Adaptation
Bidevv Evansville In Online Liquid
Move Relearner Infinite Fusion
Random Bibleizer
100 Gorgeous Princess Names: With Inspiring Meanings
Restored Republic
Town South Swim Club
Kleinerer: in Sinntal | markt.de
Was heißt AMK? » Bedeutung und Herkunft des Ausdrucks
Eero Optimize For Conferencing And Gaming
Kagtwt
Hair Love Salon Bradley Beach
Free Robux Without Downloading Apps
Obsidian Guard's Skullsplitter
Babylon 2022 Showtimes Near Cinemark Downey And Xd
Academic important dates - University of Victoria
Is Arnold Swansinger Married
Rochester Ny Missed Connections
Merkantilismus – Staatslexikon
Express Employment Sign In
Carteret County Busted Paper
Grizzly Expiration Date Chart 2023
Cult Collectibles - True Crime, Cults, and Murderabilia
Greatpeople.me Login Schedule
Dobratz Hantge Funeral Chapel Obituaries
Madden 23 Can't Hire Offensive Coordinator
Craigslist Indpls Free
Morgan State University Receives $20.9 Million NIH/NIMHD Grant to Expand Groundbreaking Research on Urban Health Disparities
Generator für Fantasie-Ortsnamen: Finden Sie den perfekten Namen
Texas 4A Baseball
Honeybee: Classification, Morphology, Types, and Lifecycle
Texas Lottery Daily 4 Winning Numbers
Latest Posts
Article information

Author: Virgilio Hermann JD

Last Updated:

Views: 5823

Rating: 4 / 5 (41 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Virgilio Hermann JD

Birthday: 1997-12-21

Address: 6946 Schoen Cove, Sipesshire, MO 55944

Phone: +3763365785260

Job: Accounting Engineer

Hobby: Web surfing, Rafting, Dowsing, Stand-up comedy, Ghost hunting, Swimming, Amateur radio

Introduction: My name is Virgilio Hermann JD, I am a fine, gifted, beautiful, encouraging, kind, talented, zealous person who loves writing and wants to share my knowledge and understanding with you.